

6FSC08110-OPT 产品说明书

概述

Firstack 数字智能型 IGBT 驱动是为大功率、高电压 IGBT 专门开发的,具有功能强大,可靠性高等特点,适用于两电平变流器,其应用覆盖新能源、轨道交通、工业传动及智能电网等各个领域。

6FSC08110 驱动产品是以 Firstack 数字智能型 IGBT 驱动为基础,针对 EconoDUAL™和 PrimePACK™封装模块开发的驱动主板,需要配合适配板 A-ED 和 A-PM 进行使用。

图 1 产品照片

目录

概述	1
系统框架图	3
使用步骤及注意事项	
机械尺寸图	5
引脚定义	6
状态指示灯说明	8
驱动参数	<u>c</u>
主要功能说明	12
◆ 短路保护	12
◆ 软关断	13
◆ 温度保护及采样	14
订购信息	17
技术支持	17
法律免责声明	17
联玄 方	17

系统框架图

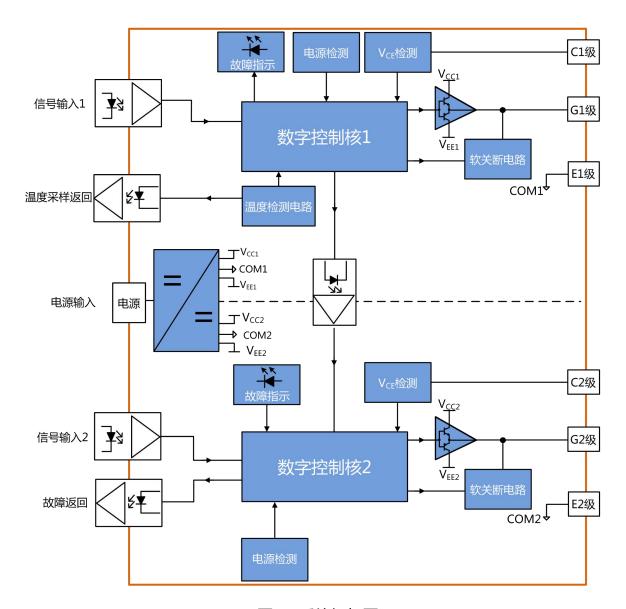


图 2 系统框架图

使用步骤及注意事项

驱动器简便使用的相关步骤如下:

1. 选择合适的驱动器

使用驱动器时,应注意该驱动器适配的 IGBT 模块型号。对于非指定 IGBT 模块无效,使用不当可能会导致驱动和模块失效。

2. 将驱动器安装到 IGBT 模块上

对 IGBT 模块或驱动器的任何处理都应遵循国际标准 IEC 60747-1 第IX章或 IEC60340-5-2 要求的静电敏感器件保护的一般规范(即工作场所、工具等必须符合这 些标准)。

如果忽视这些规范, IGBT 和驱动器都可能会损坏。

3. 将驱动器连接到控制单元

将驱动器接插件(光纤)连接到控制单元,并为驱动器提供合适的供电电压。

4. 检查驱动器功能

检查门极电压:对于关断状态,额定门极电压在相应的数据手册中给出,对于导通状态,该电压为15V。另请分别检查对应有控制信号和无控制信号时驱动器的输入电流。对于 Firstack 的数字驱动器,驱动器提供合适的供电电压后,驱动状态指示灯TEST(绿色)常亮。

这些测试应在安装前进行,因为安装后可能无法接触到门极端子。

5. 设置和测试功率单元

系统启动之前,建议用单脉冲或双脉冲测试方法分别检查每个 IGBT 模块。 Firstack 特别建议用户要确保 IGBT 模块即使在最恶劣的条件下也不会超过 SOA 规定的工作范围,因为这强烈依赖于具体的变流器结构。

机械尺寸图

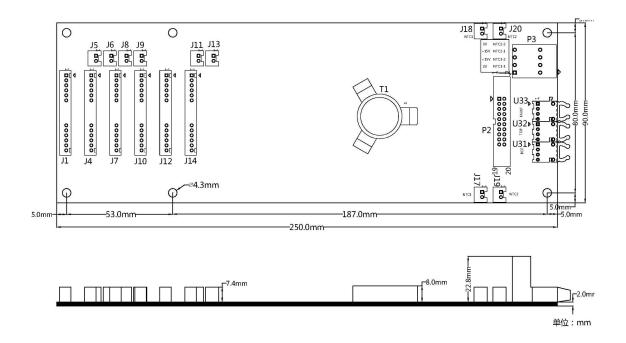


图 3 尺寸图

接插件厂家及型号

序号	标号	厂家	型号	推荐配套端子	
1	P3	Phoenix	绿色 座 MCD 1.5/4-G	绿色头	
	FIIOEIIIX 家品 座 MCD 1.5/4-0-5.81		5.01	MC 1.5/4-G-3.81	
2	2 J1, J4, J7, J10, J12, J14		ウタ 標序 VU2.5.16B	志 わ 1000	白色插头
			白色插座 XH2.5-16P 直针 180°		XH2.54-16Y
3	J5, J6, J8, J9, J11, J13	, J8, J9, J11, J13,			
3	J17, J18, J19, J20		白色插座 2X1/PH2.54 直针(公头)		XH2.54-2Y

引脚定义

P3 引脚定义:

引脚	命名	注释	引脚	命名	注释
1	GND	电源地	2	NTC1-1	NTC1 端子 1
3	VCC	电源+15V	4	NTC1-2	NTC1 端子 2
5	VCC	电源+15V	6	NTC2-1	NTC2 端子 1
7	GND	电源地	8	NTC2-2	NTC2 端子 2

J1 , J4 , J7 , J10 , J12 , J14 引脚定义:

引脚	命名	注释	引脚	命名	注释
1	TOP_G	上管_Gate	2	TOP_G	上管_Gate
3	TOP_E	上管_Emitter	4	TOP_E	上管_Emitter
5	TOP_15V	上管 15V	6	TOP_C	上管检测 C
7	NC	悬空	8	NC	悬空
9	NC	悬空	10	NC	悬空
11	BOT_C	下管检测 C	12	BOT_15V	下管 15V
13	BOT_G	下管_Gate	14	BOT_G	下管_Gate
15	BOT_E	下管_Emitter	16	BOT_E	下管_Emitter

J17/J18 引脚定义:

引脚	命名	注释	引脚	命名	注释
1	NTC1-2	NTC1 端子 2	2	NTC1-1	NTC1 端子 1

J19/120 引脚定义:

引脚	命名	注释	引脚	命名	注释
1	NTC2-2	NTC2 端子 2	2	NTC2-1	NTC2 端子 1

J5/J6/J8/J9/J11/J13 引脚定义:

引脚	命名	注释	引脚	命名	注释
1	IGBT_xNTC1	IGBT_xNTC 端子 1	2	IGBT_xNTC2	IGBT_xNTC 端子 2

状态指示灯说明

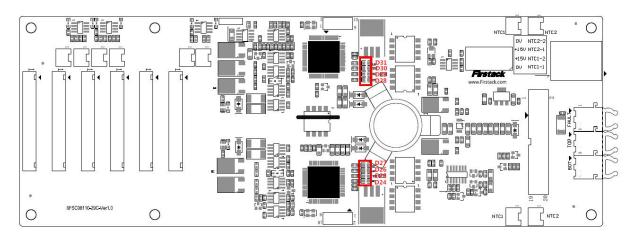


图 4 状态指示灯

为了方便客户使用,Firstack 驱动板上增加了若干状态指示 LED,便于客户了解驱动板及变流器工作状态,具体解释如下:

状态指示灯

序号	位号	丝印	注释
1	D25	TEST	无故障时亮,反之则灭
2	D30	TEST	无故障时亮,反之则灭
3	D24	SC	一次短路触发即常亮,除非重启
4	D29	SC	一次短路触发即常亮,除非重启
5	D26	UV	一次欠压触发即常亮,除非重启
6	D31	UV	一次欠压触发即常亮,除非重启
7	D28	ОТ	一次过温触发即常亮,除非重启
8	D27	TE	上管发生故障即常亮,除非重启

驱动参数

绝对最大额定值

参数	备注	最小	最大	单位
V_{IN}	对地		15.5	V
 门极最大输出电流			110	А
单路输出功率			8	W
测试电压(50Hz/1min)	原边对副边	5000		V _{AC-RMS}
	副边对副边	5000		V_{AC-RMS}
工作温度		-40	+85	°C
存储温度		-40	+85	°C

环境温度≤25℃

推荐工作条件

参数	备注	最小值	典型值	最大值	单位
V_{IN}			15		V

输入输出逻辑

	有光	无光
信号输入光纤	IGBT 开通	IGBT 关断
故障返回光纤	无故障	有故障

电气特性

电源	备注	最小值	典型值	最大值	单位
电源电流	不带载 , 注 1		0.27		А
耦合电容	原副边,注2		8		pF
电源监测					
阈值			12		V
短路保护					
V _{CE} 监测阈值			12.8		V
响应量问	TOP,注3		9		us
响应时间	BOT,注3		9		us
阻断时间			88		ms
过温保护					
过温保护阈值	85°C/105°C		可选		
时间特性					
TT:洛z和-	TOP , 注 4		730		ns
开通延时	BOT,注 4		740		ns
关断延时	TOP,注5		780		ns
<u>大</u> 樹/延昭	BOT,注5		760		ns
上升时间	TOP , 注 6		15		ns
<u> </u>	BOT,注6		15		ns
下降时间	TOP , 注 7		10		ns
	BOT,注7		10		ns

故障保持时间 15 ms

输出特性				
门极开通电压			+15	V
门极关断电压			-15	V
电气绝缘				
爬电距离	原副边,注8	10.5		mm
	副副边	9		mm
电气间隙	原副边	9		mm
	副副边	9		mm

注解说明:

- 1. 电源电流:在没有输入任何 PWM 信号,但连接 IGBT 模块;
- 2. 耦合电容:耦合电容值在表中所给值范围之内;
- 3. 响应时间:短路保护响应时间指从发生故障到开始执行软关断;
- 4. 开通延时:从原边输入的 PWM 信号上升沿传输到副边门极驱动上升沿所需的时间;
- 5. 关断延时:从原边输入的 PWM 信号下降沿传输到副边门极驱动下降沿所需的时间;
- 6. 上升时间:从门极关断电压(-15V)的10%至门极开通电压(+15V)的90%的时间量;
- 7. 下降时间:从门极开通电压(+15V)的90%至门极关断电压(-15V)的10%时间量;
- 8. 爬电距离:参照 IEC61800-5-1-2007 ,满足海拔 2km 以下,污染等级 2 的基本绝缘要求。

主要功能说明

◆ 短路保护

驱动电路通过检测 IGBT 开通时的集电极电压 Vcr 来判断 IGBT 是否处于短路状态。

集电极电压通过高压二极管来检测。当 V_{CE} 电压超过设定阈值,驱动判定 IGBT 处于短路状态,驱动将启动软关断,将 IGBT 缓慢的关断,同时将故障返回给上位机。

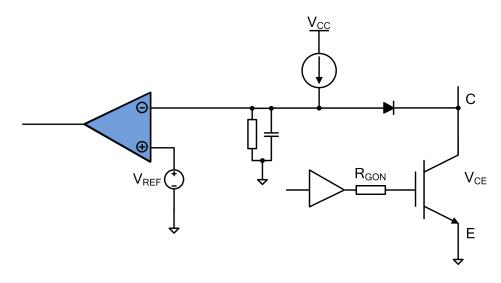


图 5 V_{CE}退饱和检测电路

◆ 欠压保护

驱动板同时监测副边侧正负电源。 当副边侧正电压或者负电压低于阈值电压时,驱动电路将判定发生了欠压故障,驱动电路将自动封锁 IGBT,同时反馈一个故障信号给上位机。当故障消除后,再经过阻断时间(block time),原边的故障口会自动复位。

对于 IGBT 桥臂, Firstack 智能驱动强烈建议不要让桥臂中的任一个 IGBT 工作在欠压状态。由于 C_{GC} 的存在, 当桥臂中的某个 IGBT 开通时, 其带来的高 dv/dt 可通过 C_{GC} 耦合到另一个 IGBT, 导致另一个 IGBT 微导通。同时, 较低的门极电压, 将增大 IGBT 的开关损耗。

◆ 软关断

当发生短路直通时,IGBT 会迅速退饱和,其两端的电压 V_{CE} 会达到直流母线电压;而流过 IGBT 的电流 I_C ,会达到额定电流的 4 倍甚至更多,取决于 IGBT 的类型及门极电压。这时,IGBT 所消耗的功率,会瞬时达到兆瓦级。如果不能在很短的时间内减小短路电流,IGBT 会因为芯片过热而烧毁。然而,如果短路时的关断速度像正常关断一样快,会产生很大的 di/dt,由于寄生电感的存在,该 di/dt 会在 IGBT 两端带来很大的电压尖峰, 使得 IGBT 过压击穿。

为了解决短路时巨大的关断尖峰,Firstack 智能驱动电路引入了软关断技术。在 IGBT 发生短路直通时,在保证短路时间不超过 10us 的前提下,通过缓慢的降低门极电压 V_{GE},既保证了 IGBT 芯片不会因为过温烧毁,也有效降低了 di/dt,避免了关断时的电压尖峰,保证了 IGBT 的安全。

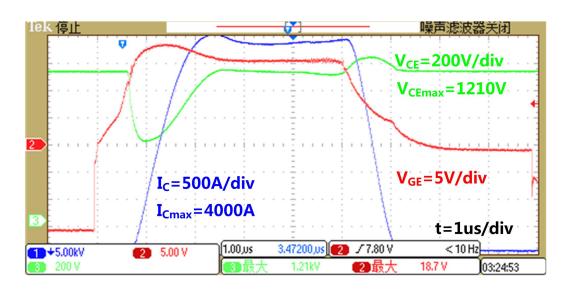


图 6 FF1000R17IE4 在 1100V 下的短路波形

上图中, CH1:I_C(蓝色); CH2:V_{GE}(红色); CH3:V_{CE}(绿色)

图 6 显示的是由 Firstack IGBT 驱动电路控制的 1700V/1000A IGBT (FF1000R17IE4) 在直流母线为 1100V 时的短路波形。短路电流峰值 4000A(4 倍于额定电流),在软关断的作用下, I_c 缓慢下降, V_{CE} 几乎没有任何的过冲,有效安全的

关闭了 IGBT。

◆ 温度保护及采样

随着模块封装技术的进步,越来越多的模块内部开始集成温度传感器,NTC就是其中的一种方式,像 PrimePACKTM、EconoDUALTM等模块,内部就集成了NTC。NTC位于 DCB上,与芯片有几毫米的距离,但是当芯片失效时产生的电弧,可能碰到NTC,因此在处理NTC时,出于安规的考虑,需要满足EN50178规范。

Firstack 智能驱动集成了温度保护电路,当 NTC 的阻值低于(高于)某个预设值后,便认为发生了过温(低温)保护。由于 NTC 距离芯片不远,电磁环境恶劣,Firstack智能驱动会通过智能故障管理系统对温度保护信号做滤波,确定为真实的温度故障后,会将该过温信号通过隔离器件(光耦或者光纤)返回给上位机。

对于水冷系统,NTC 的默认保护阈值为 85 °C;对于风冷系统,NTC 的默认保护阈值为 105 °C。

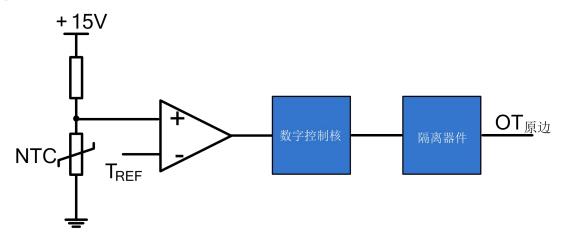


图 7 过温保护原理图

EconoDUAL[™]和 PrimePACK[™]封装模块中,内置了负温度系数的热敏电阻 NTC,当 IGBT 芯片温度上升时,其电阻值下降。Firstack 数字智能型 IGBT 驱动通过监测热 敏电阻 NTC 的阻值,来判断芯片的温度。当芯片温度超过一定阈值后,FSD 数字智能型 IGBT 驱动将自动封锁 IGBT,同时将故障返回上位机,直至芯片的温度在安全范围内。为了保证在恶劣电磁环境下对 IGBT 温度的精确测量,驱动电路板采用精密运放及高线

性光耦搭建信号处理电路,确保输出电压符合 Vo= 12*1K/(3K+NTC)函数关系,并使 -40~85℃下测量误差小于 2℃。输出端口为 NTC1-1 和 NTC1-2,室温 20℃测试结果

如下:

T/°C	Rntc/kΩ	VNTC_OUT	Ttest/°C	△T /°C
-20	38.715	0.290	-19.84	0.16
-15	29.772	0.368	-14.89	0.11
-10	23.124	0.461	-9.92	0.08
-5	18.131	0.569	-4.95	0.05
0	14.343	0.693	0.04	0.04
5	11.443	0.831	5	0
_10	9.202	0.984	10.02	0.02
15	7.456	1.148	15.01	0.01
20	6.085	1.320	19.98	0.02
25	5.000	1.500	25	0
30	4.135	1.681	29.98	0.02
35	3.441	1.862	34.97	0.03
40	2.880	2.039	39.95	0.05
45	2.424	2.211	44.96	0.04
50	2.052	2.373	49.92	0.08
55	1.745	2.527	54.93	0.07
60	1.491	2.670	59.94	0.06
65	1.281	2.801	64.91	0.09
70	1.105	2.921	69.89	0.11
75	0.957	3.030	74.87	0.13
80	0.832	3.129	79.87	0.13
85	0.726	3.218	84.87	0.13

产品选型

驱动型号	PWM 输入	散热方式
6FSC08110-OPT-A	光纤输入	风冷
6FSC08110-OPT-W	光纤输入	水冷

订购信息

6FSC08110可以支持多个厂家不同型号的 EconoDUAL™和 PrimePACK™封装模块,在选购时,请在基本驱动型号后面,根据驱动功能添加完整驱动型号,以便我们提供最符合您需求的驱动。

选购时,请提供具体的驱动型号,格式如下:6FSC08110-OPT-x,x表示具体的驱动型号,如6FSC08110-OPT-A。

技术支持

Firstack 专业的团队会为您提供业务咨询、技术支持、产品选型、价格与交货周期等相关信息,保证在48小时内针对您的问题给予答复。

法律免责声明

本说明书对产品做了详细介绍,但不能承诺提供具体的参数对于产品的交付、性能或适用性。本文不提供任何明示或暗示的担保或保证。

Firstack 保留随时修改技术数据及产品规格,且不提前通知的权利。适用 Firstack 的一般交付条款和条件。

联系方式

电话: +86-571 8817 2737

传真: +86-571 8817 3973

邮编:310011

网址: www.firstack.com

邮箱: support@firstack.com

地址:杭州市拱墅区祥园路99号运河产业大厦1号楼7楼

